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Abstract

We propose a design principle that extends Murray’s original optimization principle for vascular architecture to account for complex

blood rheology. Minimization of an energy dissipation function enables us to determine how rheology affects the morphology of simple

branching networks. The behavior of various physical quantities associated with the networks, such as the wall shear stress and the flow

velocity, is also determined. Our results are shown to be qualitatively and quantitatively compatible with independent experimental

observations and simulations.
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Introduction

The origins of and principles governing biological form

have been a major scientific issue for many years. A

particularly fruitful approach to the study of many

morphogenetic processes is based on the hypothesis that

they are regulated by physiological constraints that

optimize function (LaBarbera, 1990). Several such princi-

ples have been proposed to explain the structure of the

vascular system (Zamir, 1976), although the one which has

received most attention from experimentalists and theoret-

icians is Murray’s design principle. Murray used optimi-

zation arguments to develop laws governing branching in

vascular trees (Murray, 1926). He proposed that the

morphology of the vascular system should be determined

by a process which minimizes the energy required to

maintain the volume of blood and to drive the blood flow.

While hydrodynamical resistance decreases as the diameter
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of the vessel increases, more metabolic energy is required

to sustain a larger volume of blood. The final geometry

represents a balance between these competing effects, with

lumen radius being proportional to the cubic root of the

flow rate (Murray’s law). Although the present article

focuses on an optimization design principle, organization

principles based on different assumptions can be formu-

lated. For example, Gafiychuk and Lubashevsky (2001)

showed Murray’s law can be derived from a geometric

argument, namely, that the vascular system has to be a

space filling structure.

Murray’s law has been tested extensively and appears

to be valid in large arteries and arterioles (LaBarbera,

1990; Zamir, 1977). However, it does not provide a good

description of the microcirculation (Frame and Sarelius,

1995; Pries et al., 1995). Zamir (1977) showed that

Murray’s design principle leads to a branching structure in

which the wall shear stress (WSS) is constant. While the

WSS is approximately constant in large arterial vessels,

recent work by Pries et al. (1995) shows that it depends

on the pressure inside the vessel: the WSS depends on

the transmural pressure in a sigmoidal manner, saturating
69 (2005) 156 – 172
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to a constant value for large pressures (i.e., large arteries

and arterioles), as predicted by Murray’s law.

In this paper, we develop a new design principle that

can reproduce generic features of real vascular networks

such as those reported in Pries et al. (1995). Taber (1998)

has proposed a similar approach. His analysis is based

upon the hypothesis that vasomotor control of blood flow

requires a significant amount of the energy used to run

the circulatory system. Accordingly, he modifies Murray’s

law to include energy costs associated with maintaining

smooth-muscle contraction against the distending effects

of the wall stress, which in turn depends on pressure and

vessel geometry. The corresponding design principle

yields a non-monotonic dependence of the WSS upon

the pressure. There are two main differences between

Taber’s approach and that presented here. First, we

neglect the energy costs associated with smooth-muscle

maintenance, but we take into account other factors such

as blood rheology. Second, whereas Taber (1998) deals

with the behavior of a single vessel when the pressure is

modified, we build a network according to our design

principle and analyze the behavior of the WSS across the

network. Hence, our approach is more closely related to

the experimental procedure of Pries et al. (1995). Our

design principle produces a new (local) law relating the

lumen radius at branch points that provide a more

realistic description of vascular trees than that obtained

from Murray’s law; this issue is not addressed in Taber

(1998).

The paper is organized as follows. In Materials and

methods, we present our mathematical model and all the

elements we use to analyze it and to interpret our results.

Results is devoted to a description of our results. In the

Conclusions section, our conclusions are presented.
Materials and methods

In this section, we use a design principle as our basic

mathematical model to explain a number of properties of the

vascular system such as those observed by Pries et al. (1995).

We begin with a brief description of Murray’s law. We then

show how it may be modified in order to obtain more

realistic results. We claim that this can be accomplished by
Fig. 1. Schematic diagram of a bifurcation. Hp, Pp, Q̇p, and v0 are the hematocrit, p

vi, i = 1, 2, are the hematocrit, pressure, flow rate, and flow velocity in each one o

the direction in which the (local) pressure acts on the RBC.
including in the design principle key characteristics of blood

flow and vessel behavior, namely, complex blood rheology.

Mathematical model: design principle

Murray’s law

As stated above, Murray’s law establishes that the

vascular tree is organized so that a balance exists between

the metabolic energy of a given volume of blood and the

energy required for blood flow. Specifically, it is based on a

minimization principle for the dissipated power W. The flow

is assumed to be Poiseuille, the vessels are considered rigid

tubes and the pressure gradient is assumed to be constant.

The blood is viewed as a Newtonian fluid of constant

viscosity. These assumptions lead to the following formula-

tion of the design principle for a single vessel of length L and

radius R:

BW

BR
¼ 0;

W ¼ WH þWM;

WH ¼ 8Q̇Q2l0L

pR4
;

WM ¼ abpR
2L: ð1Þ

In Eq. (1), WH is the power dissipated by the flow (Fung,

1993), WM is the metabolic energy consumption rate of the

blood, Q̇ is the flow rate, l0 is the blood viscosity, and ab is

the metabolic rate per unit volume of blood. Using Eq. (1),

we deduce that the total dissipated power W is minimized if

Q̇Q ¼ pR3

4

ffiffiffiffiffiffi
ab
l0

r
: ð2Þ

Eq. (2) shows how the vessel radius R and the flow rate Q̇

are related when the optimization principle is satisfied.

Additionally, at a bifurcation in the vascular tree, such as the

one depicted in Fig. 1, conservation of mass implies

Q̇Qp ¼ Q̇Q1 þ Q̇Q2; ð3Þ

where Q̇p is the flow rate through the parent vessel. Taken

together, Eqs. (2) and (3) imply that, at a bifurcation, the
ressure, flow rate, and flow velocity in the parent vessel, and Hi, Pi, Q̇i, and

f the daughter branches. RBC stands for red blood cell. The arrows indicate



Fig. 2. Graph showing how the relative viscosity lrel varies with the vessel

radius R for fixed values of the hematocrit H (see Eq. (6)).
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radius of the parent vessel, Rp, and the radii of the daughter

vessels, R1 and R2, satisfy

R3
p ¼ R3

1 þ R3
2: ð4Þ

This isMurray’s basic result concerning the architecture of

the vascular tree. Using the above result, it is easy to

determine theWSSwithin a given vessel. For Poiseuille flow,

the WSS is given by

sw ¼ 4l0Q̇Q

pR3
¼ ffiffiffiffiffiffiffiffiffi

abl0

p
; ð5Þ

using Eq. (2).Thus, we conclude that the WSS is constant

throughout vascular networks constructed according to

Murray’s principle (Zamir, 1977).

Effects of blood rheology

Murray’s law neglects certain factors, such as rheology,

which may play an important role in the organization of the

vascular tree (Fung, 1993; Pries et al., 1994). Blood is far from

being a simple fluid with constant viscosity: it is a very

complex suspension of cells and molecules of a wide range of

sizes. Consequently, treating blood as a Newtonian fluid is a

very crude approximation. Fortunately, there are experimental

results which provide justification for neglecting many of

these features, enabling us to focus on the key role played by

red blood cells in blood rheology. As shown in Fig. 2, the

relative (non-dimensional) blood viscosity, lrel (R, H),

depends on R and also on the hematocrit H, which is defined

as the ratio between the total blood volume and the volume

occupied by red blood cells. The relative viscosity exhibits a

non-monotonic dependence on R which can be sub-divided

into threedifferent regions. IfR ismuchgreater than the typical

size of a red blood cell1, then the viscosity is independent of

the vessel radius. As the radius of the vessel decreases, the

viscosity also decreases (the Fahraeus–Lindqvist effect)

until the viscosity attains a minimum value R ¨ 25 Am. For

smaller values of R, the viscosity increases as R decreases

(Pries et al., 1994). The dependence on the hematocrit is

easier to understand: the higher is the hematocrit, the thicker

the blood becomes, and therefore its viscosity increases.

In this paper, we take l(R, H) = l0lrel (R, H), where l0 is

the viscosity of plasma and lrel is the (non-dimensional)

relative viscosity. In particular, we follow Pries et al. (1994),

assuming (see Fig. 2)

lrel ¼ 1þ l0:45
� � 1

� � 1� Hð ÞC � 1

1� 0:45ð ÞC � 1

2R

2R� 1:1

� �2
#

2R

2R� 1:1

� �2

;

"

l0:45
� ¼ 6e�0:17R þ 3:2� 2:44e�0:06 2Rð Þ0:645 ;

C ¼ 0:8þ e�0:15R
� �

� 1þ 1

1þ 10�11 2Rð Þ12

!
þ 1

1þ 10�11 2Rð Þ12
:

 

ð6Þ
The radius R is given in Am.
1 Average red blood cell diameter in humans is 7–8 Am.
The design principle

We now formulate our design principle as follows:

BW

BR
¼ 0;

W ¼ WH þWM;

WH ¼ 8Q̇Q2l0lrel R;Hð ÞL
pR4

;

WM ¼ abpR
2L: ð7Þ

In Eq. (7), l0 is the viscosity of plasma and lrel (R, H) is

given by Eq. (6). Substituting from Eq. (6) into Eq. (7), we

deduce that the optimization principle predicts that Q˙ and R

are related as follows:

Q̇Q ¼ R3 p

2l1=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab

4lrel � RBlrel=BR

r
: ð8Þ

As a first approximation, we assume that H is fixed in

Eq. (6) and consider the corresponding results with a radius-

dependent viscosity only. In particular, we have set H =

0.45. This particular value has been chosen because in Pries

et al. (1994), H = 0.45 is set as a ‘‘reference value ’’in the

fitting procedure to obtain Eq. (6). In this case, when we

solve Eq. (8) numerically and plot the results on a log–log

scale (see Fig. 3), we observe three different behaviors. For

large flow rates, Q̇ ¨ R3.00, for intermediate values Q̇ ¨

R2.87, whereas for small flow rates Q̇¨ R3.66. The regions in

which the data may be described by power laws are

separated by cross-over regions where R ¨ Rcr1 (Q̇ ¨

Q̇cr1) and R ¨ Rcr2 (Q ¨ Q̇cr2). In these transition regions,

the power law fails to describe the data.



Fig. 3. Dependence of the flow rate (Q̇) on the radius (R) in an optimal

network (see Eq. (8)). We have assumed the hematocrit is constant,

H = 0.45.

Table 1

Values of the parameters we have used in our simulations

Parameter Value Units Source

l0 1.2 cP Fung (1990)

ab 778 erg s�1 ml�1 Taber (1998)

Rmin 25 lm Estimated from Eq. (6)

Rsat 100 lm Estimated from Eq. (6)

c(H) 1.38H Estimated from Eq. (6)a

b(H) 0.04H + 13.7H2 Estimated from Eq. (6)a

lsat(H) 1.00 + 2.79H + 3.67H2 Estimated from Eq. (6)a

c(H), b(H), lsat(H) are given as functions of H (see Viscosity parameters

for details).
a See Viscosity parameters.
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Using Eq. (8) and mass conservation, we can derive a re-

lationship between vessel radii at bifurcation points, as Q̇ =

CRa in each one of the regions mentioned in the previous

paragraph. Recall that for Murray’s law we have

C Rp;Hp

� �
R

a Rp;Hpð Þ
p ¼ C R1;H1ð ÞRa R1;H1ð Þ

1

þ C R2;H2ð ÞRa R2;H2ð Þ
2 ; ð9Þ

with a (Ri, Hi) = 3 and C (Ri, Hi) = C (Rj, Hj) with i, j = p,

1, 2. A similar relationship can be obtained in the present

case. Indeed, as R ¨ Q̇1/a, Eq. (9) also applies in the present

case but the exponents ai and the coefficients Ci depend on

the radius of the vessel in the following manner:

ai ¼
3:00 if R1 > Rcr1;

2:87 if Rcr2 V Ri V Rcr1;
3:66 if Ri < Rcr2;

8<
: ð10Þ
and

Ci ¼
2:65 if R1 > Rcr1;

7:53 if Rcr2 V Ri V Rcr1;
0:41 if Ri < Rcr2;

8<
: ð11Þ

where Rcr1 ˚ 270 lm and Rcr2 ˚ 45 lm.

The values of the coefficients ai and Ci were calculated

for the particular values of the experimentally determined

parameters stated in Table 1 and Eq. (6). A discussion of

how sensitive our results are to changes in parameters is

given in link: Qualitative analysis from model viscosities.

Taken together, Eq. (9) shows that we recover Murray’s

result for large vessels with a large flow rate. However, the

behavior is different in smaller vessels.

Qualitative analysis from model viscosities

The previous section was based on experimental data

for the viscosity and, in particular, an expression relating

the viscosity to the vessel radius and the hematocrit

obtained by Pries et al. (1995). The complexity of Eq.

(6) renders analytical progress extremely difficult. There-

fore, in this section, we incorporate the generic features of

blood viscosity into simpler expressions which we use to

gain a deeper understanding of our results and to identify

conditions under which they are relevant. We also inves-

tigate those properties of viscosity which, when incorpo-

rated into the design principle, give rise to experimentally

observed behavior and, in particular, the sigmoidal depend-

ence of the WSS on the transmural pressure.

One of the simplest model (relative) viscosities one

can imagine is the piece-wise approximation (see Fig. 4),

lrel R;Hð Þ ¼
lsat Hð Þ Rmin

Rsat

� �c Hð Þ
R

Rmin

� ��b Hð Þ
if RV Rmin;

lsat Hð Þ R
Rsat

� �c Hð Þ
if Rmin V RV Rsat;

lsat Hð Þ if R � Rmin

8>>><
>>>:

ð12Þ

The physical meanings of the different parameters

appearing in Eq. (12) are shown in Fig. 4. Additionally,

lsat, b, and c areas assumed to be increasing functions of the



2 Throughout the rest of the paper, we adopt the following notation:

superscripts denote the generation or level in the branching network,

whereas subscripts denote a particular vessel in the tree (see Fig. 5 for the

numbering scheme).

Fig. 4. Schematic representation of our simplified model with a piece-wise

continuous viscosity.

Fig. 5. Schematic representation of the branching structure used in our

simulations. See text for details.
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hematocrit (see Fig. 2) while Rmin and Rsat are assumed to

be constants, although a closer look at Fig. 2 reveals that

this assumption is more accurate for Rmin than for Rsat.

However, this notoriously simplifies the algebraic manipu-

lation. This example will allow us to compare some

qualitatively different situations and hence to predict the

mechanisms that give rise to the observed dependence of the

WSS on the transmural pressure.

We substitute Eq. (12) into Eq. (8) to obtain:

Q̇Q¼

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab

4þb Hð Þð Þl0lsat Hð Þ
Rsat

Rmin

� �c Hð Þ
r

R3þb Hð Þ=2
R

b Hð Þ=2
min

if RV Rmin;

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab

4� c Hð Þð Þl0lsat Hð Þ

q
R3 � c Hð Þ=2
R
�c Hð Þ=2
min

if Rmin V RV Rsat;

p
2

ffiffiffiffiffiffiffiffiffiffiffi
ab

4l0lsat

q
R3 if R � Rmin;

8>>>>><
>>>>>:

ð13Þ

so that

a ¼
3þ b Hð Þ=2 if RV Rmin;
3� c Hð Þ=2 if Rmin V RV Rsat;
3 if R � Rsat

8<
: ð14Þ

and

C ¼

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab

4 þ b Hð Þð Þl0lsat Hð Þ
Rsat

Rmin

� �c Hð Þ
r

1

R
b Hð Þ=2
min

if RV Rmin;

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab

4 � c Hð Þð Þl0lsat Hð Þ

q
1

R
�c Hð Þ=2
min

if Rmin V RV Rsat;

p
2

ffiffiffiffiffiffiffiffiffiffiffi
ab

4l0lsat

q
if R � Rmin:

8>>>>><
>>>>>:

ð15Þ

Notice that from Eqs. (13) and (15) the condition c < 4

has to be satisfied.

Simulations

In order to determine whether our design principle

accounts for the experimental results of Pries et al. (1995),

we carried out numerical simulations for simple branching

networks such as the one shown in Fig. 5, its morphology

being determined by the optimization principle discussed in

the preceding section.
The system under investigation is a branching network of

vessels. We assume that at each generation all vessels are

identical and that their number increases by a factor 2, i.e., the

number of vessels,Nk + 1, in the (k +1)th generation isNk + 1 =

2Nk, where Nk is the number of vessels in generation k. Their

lengths are set according to Lk + 1 = qLk with q 	 1 (West et

al., 1997) and their radii are given by Eq. (9)2.

As we are assuming that the flow in each vessel is

incompressible, the flow pattern in this network satisfies

Kirchoff’s laws, i.e., flow conservation at each bifurcation

point,

Q̇Qi ¼ Q̇Qj þ Q̇Qk ; ð16Þ

where j and k denote vessels branching from vessel i, and

conservation of energyX
j

DPj ¼ DPT: ð17Þ

In Eq. (17), DPT is the pressure drop across the whole

network, DPj is the pressure drop across vessel j, and the

sum is over the vessels in a continuous path connecting the

ends of the network (see Fig. 5). Additionally, we assume

Poiseuille flow in each vessel, so that

DPj ¼ ZjQ̇Qj; ð18Þ

where Zj = 8l0l rel
(Rj, HJ) Lj/pR

4
j .

Eqs. (16)–(18) fully determine the flow rate in all the

vessels of the network, provided we know their radii and
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lengths. In Appendix A, we explain how the geometry of the

vessels can be determined according to the restrictions

imposed by our optimization principle. In broad terms, we

use Eqs. (16) and (17) to obtain the flow rate in each vessel

and Eq. (18) to determine the pressure drop across each

vessel of the network. This enables us to calculate the

pressure3 in any vessel belonging to generation k as

Pk ¼ PH �
Xk � 1

i ¼ 1

DPi � DPk

2
; ð19Þ

where PH is the pressure at the inlet point of the network.

Further, given the radii and flow rates in each vessel, we can

use Eq. (5) to calculate the WSS. Eqs. (18) and (19) provide

a relation between pressure and radius. Since there is a one-

to-one correspondence between a vessel’s generation and its

radius, we can use this relation to plot the WSS as a function

of the pressure.

Another factor that needs to be accounted for is

hematocrit distribution at bifurcations. According to Fung

(1993), the simplest way to proceed is to assume that the

distribution of hematocrit depends on the flow velocity of

the daughter vessels. Roughly speaking, a larger proportion

of the hematocrit from the parent vessel, Hp, is transported

along the faster branch (see Fig. 1):

Hp ¼ H1 þ H2

H1

H2

¼ v1

v2
; ð20Þ

where vi = Q̇i/pR
2
i (i = 1, 2). Eq. (20) is a simplification of

the expression given by Fung (1984) in order to simplify the

algebraic manipulation, althxough in the case of networks in

which all the bifurcations are symmetrical, which is

analyzed in detail in Results, this may not yield totally

realistic results (for example, hematocrit values are very

small after a large number of bifurcations).

To verify our procedure, we solved Kirchoff’s laws for a

network constructed according to Murray’s law, i.e., ai = 3,

i = 1, 2, 3. We found that Q̇ ¨ R3 and sw was constant, as

expected.
Results

Symmetrically branching network with uniform hematocrit

In Appendix A, we show that a branching network, in

which all vessels in the same generation are identical, satisfies

the restrictions imposed by our design principle. Hereafter

such a network is referred to as a symmetrically branching
3 We compute the pressure at the mid-point of the vessel. As we are

assuming that the vessels are rigid, the pressure at a point x along the axis of

the vessel is simply given by P(x) = PH � (DP/L)x. We will assume that all

the vessels in a given generation are identical and therefore the

corresponding pressures are also identical.
network. Our aim in this section is to test our model in the

simple situation when variation in hematocrit is not taken into

account, so that blood viscosity depends on the radius in the

non-monotonical way shown in Fig. 4 but is independent of

the hematocrit. For the simulations discussed in this section,

we take l(R) K l0l rel
(R, H = 0.45).

Initially, we present results for a symmetrically branching

network. As shown in Appendix A, this network is not

unique. Due to the non-monotonic dependence of the

viscosity upon the radius, we can construct asymmetrically

branching networks. Hence, although the results we discuss

in this section are obtained for a simple case, our model is

also able to produce heterogeneous structures. Such

behavior is consistent with experimental results that indicate

that no two vascular trees are identical. This point will be

discussed further in The role of hematocrit: asymmetric

bifurcations.

We perform simulations on optimal symmetric networks,

whose structure is determined by the branching exponents of

Eq. (13). For simplicity, we use the simplified model relative

viscosity (Eq. (12)) rather than Eq. (6). The branching

exponents of Eq. (13) are obtained by fixing H = 0.45 in Eq.

(6). If we fix H = 0.45 in Eq. (13), by comparison to Eq. (6),

we can obtain the corresponding values of b(H = 0.45) =

2.81 and c(H = 0.45) = 0.62.

The rest of the parameters needed to determine the

relative viscosity (Eq. (12)) are obtained from Eq. (6) with

H = 0.45. We will take Rmin = 25 Am, Rsat = 100 Am, and

lsat (H = 0.45) = 3.2. The network is generated according to

Eq. (A.16). We have taken R1 = 350 Am, L1 = 0.7 cm, PH =

100 mm Hg, and DPT = 80 mm Hg.

We have carried out simulations for q = 1, so that all the

vessels in the network have the same length (results shown

in Fig. 6). All the vessels within a generation have the same

radius. The results of these numerical computations are

illustrated in Fig. 6. We compare these results to the results

reported by Pries et al. (1995) (Figs. 1, 3, and 5).

Our predictions of the wall shear stress as a function of the

pressure exhibit a behavior resembling the experimental

observations. If we compare our simulation results for q = 1

(Fig. 6a) and the data shown in Pries et al. (1995), Fig. 3 for

arterioles (we are considering a vascular tree, not a full

vascular network with a venous side), the 5-fold drop in the

wall shear stress we observe is consistent with the average

drop observed experimentally (see Pries et al., 1995; Fig. 3).

Simulation results for the radius as a function of pressure

(Fig. 6c) are in good agreement with the observations (see

Pries et al., 1995; Fig. 5). The relationships we obtain

between flow velocity and vessel radius are also in qualitative

agreement (compare Fig. 6b with Pries et al., 1995, Fig. 1),

although concavity is lacking. However, quantitative agree-

ment is poor: we are predicting flow velocities two orders of

magnitude higher than those observed experimentally.

The results obtained for v(R) for small vessels might result

a bit surprising. However, the origins of this non-monotonic

dependence of v on R can be easily understood in terms of the



Fig. 6. Simulation results for a symmetrically branching network with q =

1, i.e., all the vessels have the same length. Constant hematocrit is assumed.

Panels a and b show the wall shear stress as a function of the pressure and

the flow velocity as a function of the radius, respectively. Panel c shows the

radius as a function of the pressure. The viscosity is given by Eq. (12) with

H = 0.45. See text for parameter values.
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corresponding form of l(R). For R < Rmin, l(R) decreases as
a function of R, whereas for Rmin < R < Rsat, l(R) increases.
Accordingly, as R increases, so does v as long as R < Rmin.

When Rmin < R < Rsat l(R), as the viscosity increases, v

decreases. For R > Rsat, the viscosity is kept constant but the

resistance Z ¨ lsat/R
4 is a decreasing function of R and

therefore v increases. Note that the boundaries between the

regions in which v(R) shows these different behaviors

correspond to Rmin and Rsat.

It might be surprising that we obtain 5-fold to 8-fold

reductions in the WSS for a small change in the value of the

relative viscosity4. However, for example in the case q = 1,

by comparing s (Rsat) and s (Rmin), we obtain (see Eqs. ),

(12) and (13):

s Rminð Þ
s Rsatð Þ ¼ 4� c Hð Þð Þ�1=2 Rmin

Rsat

� �c Hð Þ
˚ 0:23; ð21Þ

where we have used the parameter values given in Table 1.

This result is consistent with our simulations.

The role of hematocrit: asymmetric bifurcations

So far, we have presented results concerning symmetri-

cally branching networks with uniform hematocrit, assuming

only a non-monotonical dependence of the viscosity on the

radius of the vessel (Fig. 4).Although our results appear to

capture some of the experimentally observed trends, our

approach so far has one serious weakness: it implies a very

tight control system for the developing vasculature and leaves

no room for noise or variability in the structure of the vascular

network.

As we show in Appendix A, by formulating our design

principle in the form of a relationship between radius and

blood flow, the final structure of the network is imposed by

conservation laws. In the uniform hematocrit case, the only

possible source of heterogeneity is a rather narrow window

where asymmetric bifurcations are possible (see Appendix

A for details).

However, the inclusion of variable hematocrit naturally

introduces a source of heterogeneity into the possible

structures our branching network can exhibit. As we show

in Appendix A, there are several possible asymmetric

bifurcations with a wide range of feasibility.

We now analyze the properties of networks that were

generated by taking advantage of such variability.

Viscosity parameters

Before proceeding further, we need to determine the form

of the functions b(H), c(H), and lsat(H) appearing in the

expression for the viscosity (Eq. (12)). We will fit them

using the data provided by Eq. (6).
4 In the range of radii values in which we are doing our simulations, the

relative viscosity is reduced by a factor 1.5 (see Fig. 2).



Fig. 7. These panels show the dependence of the hematocrit of (a)b, (b) c, and
(c) lsat. The circles represent in each case values obtained from analysis of the

experimental data (Eq. (6) see text for details). Solid lines correspond to the

fits we have used: linear for c and quadratic for b and lsat. The expressions

we have obtained from the fitting procedure are given in Table 1.
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To determine b(H) and c(H), we have proceeded as

follows. First, we have repeated the procedure we followed

in The design principles to obtain the branching exponents

ai(H) for different values of the hematocrit. Then, using

these values for ai(H) and Eq. (14), we obtain b(H) and

c(H). The results are plotted in Figs. 7a and b, respectively.

The data corresponding to c(H) fit quite well to a straight

line (Fig. 7b). For b(H), a quadratic provides a better fit.

lsat(H) was more straightforward to determine. We give a

very large value to R in Eq. (12), in particular R = 1 cm, for

different values of the hematocrit. The corresponding values

of lrel are those we take for lsat(H), which are plotted in

Fig. 7c. We fit these data using a quadratic. A summary of

our results is given in Table 1.

Blood flow simulations in optimal networks with asymmetric

bifurcations

To obtain a general idea of the effects that the

introduction of hematocrit and asymmetric bifurcations

produce on the blood flow through our optimal networks,

we have first performed simulations in which preference is

given to the occurrence of asymmetric bifurcations: when

generating the optimal network, we first try one of the

three asymmetric bifurcations described in Appendix A. If

the bifurcation meets the corresponding feasibility criteria

(see Appendix A), then the asymmetric bifurcation is

implemented. Only when the asymmetric bifurcation is

not possible is a symmetric bifurcation used. This is the

procedure we have used to generate the results shown in

Figs. 8 and 9.

Fig. 8 summarizes results for such an optimal branching

network, containing asymmetric bifurcations of type NS1

and NS3 (see Appendix A for the nomenclature) and

symmetric bifurcations. Fig. 9 shows the results for an

optimal branching network containing asymmetric bifurca-

tions of type NS2 and NS3 (see Appendix A for the

nomenclature) and symmetric bifurcations.

Figs. 8a and 9a show how the wall shear stress varies as

a function of the pressure for the respective networks. In

both cases, there is what we might term a ‘‘two-branch’’

behavior. One of the branches exhibits the type of

sigmoidal behavior observed by Pries et al. (see Fig. 3 in

Pries et al., 1995 and link: Fig. 4 in Pries et al., 1998). The

slope is steeper for the network containing NS1 asym-

metric bifurcations. The other branch appears to have

smaller values of the wall shear stress. This two-branch

behavior is a consequence of the presence of asymmetric

bifurcations:NS1 and NS2 yield bifurcations with daughter

vessels showing very different values of the radii (Figs. 8c

and 9c) and hematocrit (see Figs. 8d and 9d). In particular,

one of the daughter vessels is much wider and carries

much more hematocrit (see Figs. 8d and 9d) and blood

flow than the other. This fact, together with the strong

dependence of viscosity on both radius and hematocrit,

explains why the smaller branch has a level of wall shear

stress that is much smaller than the bigger branch.



Fig. 8. Results of the blood simulations we have performed on an optimal network with three types of bifurcation: NS1-type asymmetric, NS3-type asymmetric,

and symmetric (see text for details). These plots show the hemodynamic quantities corresponding to each one of the vessels, so that every circle represents an

individual vessel of the vascular tree. In the case of the pressure, it is calculated in the middle point of each one of the vessels. (a) Wall shear stress as a function

of pressure, (b) flow velocity as a function of radius, and (c and d) radius and hematocrit as a function of the branching generation, respectively. For these

simulations: R1 = 120 Am, H1 = 0.2, and L1 = 0.24 cm. The parameter values are given in Table 1.
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Some of the smaller branches are likely to undergo

vessel pruning driven by some flow-related signal,

probably wall shear stress (Resnick et al., 2003). In

particular, the tiny vessels generated by NS2 asymmetric

bifurcations at the earlier bifurcations (see Fig. 10) have a

very low level of wall shear stress which might trigger

apoptosis of the endothelial cells and, consequently, vessel

pruning. Since knowledge of the mechanisms involved in

this process is rather poor, we have not included this

phenomenon in our model. However, from the experimen-

tal results (Fig. 3 in Pries et al., 1995), we can see that

levels of wall shear stress might be too low for vessel

survival when P = 60 mm Hg, whereas the values of the

wall shear stress corresponding to P = 20 mm Hg seem to

be feasible. Our conclusion is that any potential survival

mechanism would depend not only on the wall shear stress

but also on the pressure.
Now that we have a general flavor of the kind of

behavior we can expect when hematocrit and asymmetric

bifurcations are introduced, we present simulations per-

formed on heterogeneous optimal networks. To build up

these heterogeneous networks we proceed as follows. If the

parent vessel radius Rp > Rsat, we choose at random

between NS1 and NS2 asymmetric bifurcations. If,

however, Rmin < Rp < Rsat, we choose at random between

a NS3 asymmetric bifurcation and a symmetric bifurcation.

If the radii of the daughter vessels do not meet the

feasibility criteria (see Appendix A) when an asymmetric

bifurcation is attempted, we enforce a symmetric bifurcation

instead.

Again, we obtain results which qualitatively reproduce

the experimental observations of Pries et al. (1995). In this

case, we obtain the 10-fold reduction in the wall shear

stress observed in the simulations reported by Pries et al.



Fig. 9. Results of the simulations we have performed on an optimal network with three types of bifurcation: NS2-type asymmetric, NS3-type asymmetric, and

symmetric (see text for details). These plots show the hemodynamic quantities corresponding to each one of the vessels, so that every circle represents an

individual vessel of the vascular tree. In the case of the pressure, it is calculated in the middle point of each one of the vessels. (a) Wall shear stress as a function

of pressure, (b) flow velocity as a function of radius, and (c and d) radius and hematocrit as a function of the branching generation, respectively. For these

simulations: R1 = 120 Am, H1 = 0.2, and L1 = 0.24 cm. The parameter values are given in Table 1.
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(see Fig. 4 in Pries et al., 1998), with which we observe

good quantitative agreement, except for the loss of

concavity. As we have mentioned, this fact might be due

to the absence in our model of a mechanism implementing

wall-shear-stress-induced vascular remodeling (Resnick et

al., 2003).

Regarding other hemodynamic quantities of interest, we

have computed flow velocity as a function of the radius

for our three different networks (see Figs. 8b, 9b, and

10b). Pries et al. (1995) reported experimental measure-

ments of the flow velocity for radii up to 30 Am (Fig. 1 in

Pries et al., 1995). From Fig. 11b, we see that we obtain

values for the flow velocity very similar to the observed

ones in for radii between 1 Am and10 Am. Figs. 11a and c

show that the quantitative agreement is relatively poorer

for vessels with radii between 10 and 30 Am, specially for

radii between 10 and 20 Am, where we obtain vessel

velocities one order of magnitude bigger than the experi-
ments. In the region between 20 and 30 Am, we obtain

better quantitative agreement, as the predicted velocities

are about twice as big as those observed and hence we

capture the right order of magnitude. For example, for R =

30 Am, v ˚ 10 mm/s according to the experiments (Fig. 1

in Pries et al., 1995) and v ˚ 25 mm/s according to our

model.

Another observation about the behavior of this hetero-

geneous optimal network is derived from Fig. 12.

Experimentally, the value of the branching exponent is

obtained by collecting data for junctions over many

vascular generations and averaging to obtain an estimate

(Frame and Sarelius, 1995). If we were to do this,

according to Fig. 12, we would obtain a figure very close

to 3, i.e., Murray’s law. However, Murray’s law predicts a

uniform value of the wall shear stress. This apparent

contradiction comes from the fact that we are using a local

bifurcation law (Eq. (9)), rather than a global one with an



Fig. 10. Results of the simulations in an optimal heterogeneous network. To generate this network, we have chosen at random one of the possible bifurcations,

either symmetric or asymmetric (see text for details). These plots show the hemodynamic quantities corresponding to each one of the vessels, so that every

circle represents an individual vessel of the vascular tree. In the case of pressure, it is calculated in the middle point of each one of the vessels. (a) Wall shear

stress as a function of pressure, (b) flow velocity as a function of radius, and (c and d) radius and hematocrit as a function of the branching generation,

respectively. For this simulation: R1 = 120 Am, H1 = 0.2, and L1 = 0.24 cm. The parameter values are given in Table 1.
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average branching exponent. Our local bifurcation law

depends on the radius and the hematocrit through the

coefficients Ci (Ri, Hi) and ai (Ri, Hi). Karau et al. (2001)

obtained similar results on studying vascular trees with

heterogeneous branching exponents: even when the mean

value of the branching exponent is 3, non-uniform wall shear

stress was observed. Their conclusion was that the influence

on the wall shear stress in determining vessel radius is not

necessarily manifested in a mean value of the branching

exponent.
Conclusions

By extending the basic scheme proposed by Murray

(1926) to introduce such features as complex blood

rheology and hematocrit, we have formulated a design
principle whose results are in good qualitative agreement

with experimental observations of hydrodynamic quantities.

Simulations carried out in branching networks whose

geometry is determined according to our design principle

reproduce experimentally observed trends of the WSS and

the flow velocity (Pries et al., 1995). From the quantitative

point of view, the results obtained for the wall shear stress

are compatible with simulation results reported by Pries et

al. (1998) and the experimental results by Pries et al.

(1995). Our quantitative predictions concerning flow

velocity are of the same order of magnitude as those

observed in experiments (Pries et al., 1995) in several

ranges of vessels radii.

We have introduced two theoretical issues in this paper

which are important: heterogeneity in the network and of

local bifurcation laws. By including complex blood rheol-

ogy, in the form of hematocrit and radius dependent



Fig. 11. Flow velocity as a function of the radius for our three different

networks. These plots show the flow velocity in the range of radii in which

Pries et al. (1995) carried out their experiments. (a) Optimal network

containing NS1-type asymmetric, NS3-type asymmetric, and symmetric

bifurcations. (b) Optimal network containing NS2-type asymmetric, NS3-

type asymmetric, and symmetric bifurcations. (c) Heterogeneous network.

Fig. 12. Branching exponents as a function of the branching generation.
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viscosity, our model naturally allows for several types of

bifurcations (symmetric and various different asymmetric

ones). In turn, this provides a natural way of introducing

heterogeneity into our model. If the viscosity is assumed

constant (Murray, 1926), our analysis in Appendix A would

imply that only symmetric bifurcations are possible, leaving

no room for heterogeneity.

A local bifurcation law Eq. (9) arises naturally in our

model. This local bifurcation law reconciles the observation

of a non-uniform wall shear stress with an average (global)

value of the branching exponent very close to 3. This result

is in agreement with previous work (Karau et al., 2001). It

also reconciles the experimental observation of a non-

uniform wall shear stress (Pries et al., 1995) with the

geometrical design principle of Gafiychuk and Lubashevsky

(2001), who, from the requirement of a space filling

network, deduced that the branching exponent should be

equal to three.

One major weakness of our model when dealing with

microcirculation is the use of Poiseuille’s law. While this

law accurately describes the flow in arterioles, it fails for

the smaller vessels. In order to extend our methodology to

describe the vasculature within tumors, we would need to

account for fluid leakage from the vessel (Netti et al.,

1996). We leave this as an open problem for future

investigation.
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Appendix A. Structure of an optimal network of rigid

vessels

In order to determine the structure of a vascular network

that satisfies our optimization principle, we impose the

following relationship between lumen radius and flow rate,

Q̇ =CRa (see Eqs. ), (10), and (11). To proceed further, let us

consider the branching network depicted in Fig. 5.

Application of Kirchoff’s laws and Eq. (20) yields

C R1;H1ð ÞRa R1;H1ð Þ
1 ¼ C R2;H2ð ÞRa R2;H2ð Þ

2

þ C R3;H3ð ÞRa R3;H3ð Þ
3 ; ðA:1Þ

C R2;H2ð ÞRa R2;H2ð Þ
2 ¼ C R4;H4ð ÞRa R4;H4ð Þ

4

þ C R5;H5ð ÞRa R5;H5ð Þ
5 ; ðA:2Þ

C R3;H3ð ÞRa R3;H3ð Þ
3 ¼ C R6;H6ð ÞRa R6;H6ð Þ

6

þ C R7;H7ð ÞRa R7;H7ð Þ
7 ; ðA:3Þ

l R1;H1ð ÞL1
p

C R1;H1ð ÞRa R1;H1ð Þ � 4
1

þ l R2;H2ð ÞL2
p

C R2;H2ð ÞRa R2;H2ð Þ � 4

2

þ l R4;H4ð ÞL4
p

C R4;H4ð ÞRa R4;H4ð Þ � 4

4 ¼ DPT; ðA:4Þ

l R1;H1ð ÞL1
p

C R1;H1ð ÞRa R1;H1ð Þ � 4

1

þ l R2;H2ð ÞL2
p

C R2;H2ð ÞRa R2;H2ð Þ � 4

2

þ l R5;H5ð ÞL5
p

C R5;H5ð ÞRa R5;H5ð Þ � 4
5 ¼ DPT; ðA:5Þ

l R1;H1ð ÞL1
p

C R1;H1ð ÞRa R1;H1ð Þ � 4
1

þ l R3;H3ð ÞL3
p

C R3;H3ð ÞRa R3;H3ð Þ � 4

3

þ l R6;H6ð ÞL6
p

C R6;H6ð ÞRa R6;H6ð Þ � 4

6 ¼ DPT; ðA:6Þ

l R1;H1ð ÞL1
p

C R1;H1ð ÞRa R1;H1ð Þ � 4

1

þ l R3;H3ð ÞL3
p

C R3;H3ð ÞRa R3;H3ð Þ � 4
3

þ l R7;H7ð ÞL7
p

C R7;H7ð ÞRa R7;H7ð Þ � 4
7 ¼ DPT; ðA:7Þ

H1 ¼ H2 þ H3; ðA:8Þ

H2 ¼ H4 þ H5; ðA:9Þ
H3 ¼ H6 þ H7; ðA:10Þ

H2

H3

¼ C R2;H2ð ÞRa R2;H2ð Þ � 2

2

C R3;H3ð ÞRa R3;H3ð Þ � 2

3

; ðA:11Þ

H4

H5

¼ C R4;H4ð ÞRa R4;H4ð Þ � 2

4

C R5;H5ð ÞRa R5;H5ð Þ � 2
5

; ðA:12Þ

H6

H7

¼ C R6;H6ð ÞRa R6;H6ð Þ � 2

6

C R7;H7ð ÞRa R7;H7ð Þ � 2
7

; ðA:13Þ

where ai is the branching exponent corresponding to Ri. We

note that the outlet pressure of all vessels in the last

generation is the same and that both ai and (consequently)

Ci depend on the radius (see Eqs. (10) and (11)). Eqs. (A.4)

(A.5) (A.6) (A.7) imply that

l R4;H4ð ÞC R4;H4ð ÞRa R4 ;H4ð Þ�4
4 ¼ l R5;H5ð ÞC R5;H5ð ÞRa R5 ;H5ð Þ�4

5 ; ðA:14Þ

l R6;H6ð ÞC R6;H6ð ÞRa R6 ;H6ð Þ�4
6 ¼ l R7;H7ð ÞC R7;H7ð ÞRa R7 ;H7ð Þ�4

7 : ðA:15Þ

For simplicity, we now assume that all the vessels in

the network are equal in length (Li = L constant, i = 1,

2,. . .,7). A particular solution, and in fact the simplest

one, of Eqs. (A.8) and (A.9) is R4 = R5 = R6 = R7 and H4 =

H5 = H6 = H7 since C(Ri, Hi) and a(Ri, Hi) are identical

when Ri and Hi are identical. In this case, Eqs. (A.4) and

(A.5) admit R2 = R3 and H2 = H3 as a possible solution.

Thus the simplest branching network that is consistent with

our optimization principle is one for which all vessels in a

given generation have the same radius. Referring to Eq. (9),

we deduce that for such a network the radii of the

subsequent generations satisfy

Rk þ 1 ¼ Ck

2Ck þ 1

� �
Rk
� �ak=ak þ 1

; ðA:16Þ

Hk þ 1 ¼ Hk

2
: ðA:17Þ

A.1. A note concerning uniqueness

We showed above that it is possible to construct a

symmetric branching network that satisfies the restrictions

imposed by Kirchoff’s laws and our design principle. We

now show that this network is not unique, even when we

assume that the lengths of the vessels in the same

generation are equal.

Consider first the case in which hematocrit is not taken into

account: fix in Eqs. (A.1) (A.2) (A.3) (A.4) (A.5) (A.6) (A.7) and

Eqs. (A.14) and (A.15) Hi = 0.45, i = 1,. . .,7 and neglect

Eqs. (A.8) (A.9) (A.10) (A.11) (A.12) (A.13). Consider the

resulting Eqs. (A.14) and (A.15), the solution to these equa-



Fig. A.1. Schematic representation showing the bivalued character of the

viscosity. See text for details.
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tions is unique if the viscosity is a monotonic univalued

function of the radius. However, as we show in Fig. A.1,

there is a range of values of the radius for which the viscosity

is a non-monotonous function of the radius. Therefore,

bifurcations at which the daughter vessels have different radii

may arise.

In order to address this question in more detail, we use the

model viscosity stated in Eq. (12). Suppose that we are in the

region where viscosity is a multivalued function of the

radius (i.e., R < Rsat), so that, for instance, Eq. (A.14) may

be satisfied by R4 = R5 such that R4 < Rmin < R5. The

condition for this to occur is

Rmin

Rsat

� �c=2

R
b=2
min

ffiffiffiffiffiffiffiffiffiffiffiffi
1

4þ b

s
R
�1�b=2
4 ¼ R

c=2
min

ffiffiffiffiffiffiffiffiffiffiffi
1

4� c

s
R
�1 þ c=2
5 ;

ðA:18Þ

where we have introduced Eqs. (12) and (13) into Eq.

(A.14). After some algebra we find:

R4 ¼
R

b
min

R
c
sat

4� c
4þ b

R
2 � c
5

 ! 1
2þb

ðA:19Þ

Hence we deduce that if there are values of R5 Z

(Rmin, Rsat) for which Eq. (A.19) yields R4 < Rmin, then

it is possible to have an asymmetric bifurcation that

is compatible with Kirchoff’s laws and our design

principle.
Fig. A.2. Schematic of three possible asymmetric bifurcations w
From Eq. (A.19), we observe that when c 	 2 there is

a range of values of R5 for which R4 < Rmin and, hence,

for which asymmetric branching may occur. However, for

large values of R5, such asymmetric branching cannot

occur. Given c 	 2, we determine the maximum value of

R5 for which asymmetric branching can occur by fixing

R4 = Rmin, to obtain

Rcrit ¼
4þ b
4� c

R2
minR

c
sat

� �1= 2 � cð Þ
ðA:20Þ

From Eq. (A.14) we see how changing the value of c
affects the feasibility of the asymmetric bifurcation: for a

given value of b, the asymmetric bifurcation becomes

more unlikely when c grows, as Rcrit becomes bigger

thus reducing the interval of feasibility for the asym-

metric bifurcation. A similar behavior is observed when

c is fixed and we allow variations in b: the higher b
becomes, the more improbable the asymmetric bifurca-

tion becomes.

The inclusion of variable hematocrit in the model

yields a wider variety of possibilities. Whereas there is

only one asymmetric bifurcation in the uniform hema-

tocrit case, we have at least three different possibilities

when variable hematocrit is accounted for (see Fig.

A.2):

& Parent vessel with radius R2 > Rsat: small daughter

branch with radius R4 such that Rmin < R4 < Rsat and large

daughter vessel with radius R5 > Rsat. The corresponding

hematocrit values for the small branch H4 and the large

branch H5 must satisfy H4 > H5 This situation is referred to

as NS1 (see Fig. A.2).

& Parent vessel with radius R2 > Rsat: small daughter

branch with radius R4 such that R4 < Rmin and large

daughter vessel with radius R5 > Rsat. The corresponding

hematocrit values for the small branch H4 and the large

branch H5 must satisfy H4 < H5. This situation is referred to

as NS2 (see Fig. A.2).

& Parent vessel with radius Rsat > R2 > Rmin: small

daughter branch with radius R4 such that R4 < Rmin and
hen hematocrit is take into account. See text for details.



Fig. A.3. Numerical results for NS1-type asymmetric bifurcations. Dashed

line corresponds to H2 = 0.05, dotted line to H2 = 0.1, solid line to H2 =

0.15, and dot-dashed line to H2 = 0.3. See text for details.

Fig. A.4. Numerical results for NS2-type asymmetric bifurcations. Dashed

line corresponds to H2 = 0.05, dotted line to H2 = 0.1, solid line to H2 =

0.15, and dot-dashed line to H2 = 0.3. See text for details.
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large daughter vessel with radius Rsat > R5 > Rmin.

The corresponding hematocrit values for the small branch

H4 and the large branch H5 must satisfy H4 < H5 This
situation is referred to as NS3 (see Fig. A.2). This last

case is equivalent to the (unique) asymmetric bifurcation

of the uniform hematocrit case.
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In this case, the analysis is less straightforward as for

the uniform hematocrit case, but we can still make some

progress. We now need to consider Eqs. (A.2), (A.12),

(A.14). After some algebra, we obtain:

H2 � H5

H5

¼ R2
5

R2
4 R5;H5; Q̇Q2;H2

� � p
2

Q̇Q2l
1=2
0 l1=2

sat H5ð Þ
a1=2b R3

5

� 1

!
;

 

lsat H5ð Þ
R2
5

¼ R
c H2 � H5ð Þ � 2

2

R
c H2 � H5ð Þ
sat

lsat H2 � H5ð Þ
4� c H2 � H5ð Þ

�
;

�
ðA:21Þ

for NS1;

H2 � H5

H5

¼ R2
5

R2
4 R5;H5; Q̇Q2;H2

� � 2

p
Q̇Q2l

1=2
0 l1=2

sat H5ð Þ
a1=2b R3

5

� 1

!
;

 

lsat H5ð Þ
R2
5

¼ R
�b H2 � H5ð Þ � 2

2

R
�b H2 � H5ð Þ
min

Rmin

Rsat

� �c H2 � H5ð Þ

lsat H2 � H5ð Þ
4þ b H2 � H5ð Þ

� �
; ðA:22Þ

for NS2; and

H2 � H5

H5

¼ R2
5

R2
4 R5;H5; Q̇Q2;H2

� � 2

p
Q̇Q2 4� c H5ð Þð Þ1=2l1=2

0 lsat H5ð Þ
a1=2b R

3�c H5ð Þ=2
5

� 1

 !
;

lsat H5ð Þ
R2
5

¼ R
�b H2 �H5ð Þ�2
2

R
�b H2 �H5ð Þ
min

Rmin

Rsat

� �c H2 �H5ð Þ lsat H2 � H5ð Þ
4þ b H2 � H5ð Þ

� �
; ðA:23Þ

for NS3, respectively. In Eqs. (A.21)–(A.23), the quantity

R4(R5, H5, Q˙sub2, H2) is given by:

R4 R5;H5; Q̇Q2;H2

� �
¼ Q̇Q2 � C R5;H5ð ÞRa R5 ;H5ð Þ

5

C R4;H2 � H5ð Þ

 !1=a R4 ;H2�H5ð Þ

: ðA:24Þ

Hence, Eqs. (A.21)–(A.24) provide a system of non-

linear equations to determine R5 and H5 for each case. Then,

using the design principle and the corresponding conserva-

tion laws, we can obtain R4 and H4.

Due to the complexity of Eqs. (A.21)–(A.24), we

can no longer carry out as detailed an analysis as for the

uniform hematocrit case. However, we can still gain some

insight from numerical solutions. We have used a Newton–

Raphson method for solving these systems of equations

(Press et al., 1992). This numerical study allows us to assess

under which conditions we can obtain feasible bifurcations,

i.e., which values of R2 and H2 (parent vessel radius and

hematocrit) yield acceptable values of R4 and R5.

In the case of NS1 bifurcations, Fig. A.3a shows

that acceptable values of R5, i.e., R5 > Rsat
5, for a
5 Recall that Rmin = 0.0025 cm and Rmin = 0.01 cm.

Fig. A.5. Numerical results for NS3-type asymmetric bifurcations. Dashed

line corresponds to H2 = 0.05, dotted line to H2 = 0.1, solid line to H2 =

0.15, and dot-dashed line to H2 = 0.3. See text for details.
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wide range of values of R2 and H2 only for values of H2

very close to Rsat do we obtain R5 < Rsat. However,

acceptable values of R4, i.e., Rmin < R4 < Rsat, are obtained

in a narrower range of values of R2 and H2. Fig. A.3b shows

how, as H2 decreases, the range of values of R2 for which an

acceptable R4 is obtained gets smaller. Hence, the

feasibility of NS1 bifurcations is determined by the smaller

daughter branch. We also observe that the thinner the

blood becomes (i.e., the smaller the H content) the less

likely this bifurcation becomes.

For NS2 bifurcations, we obtain similar results: R5

plays no role in determining whether this type of

bifurcation can actually occur (Fig. A.4a), R4 is again

the key quantity. One difference with respect to the

previous case is that for NS2 bifurcations the thicker

the blood becomes (i.e., the bigger the hematocrit) the

more improbable this type of bifurcation becomes

(Fig. A.4b).

The situation with NS3 bifurcations is again similar: a

minor role is played by R5 (Fig. A.5a) and again the

bifurcation is less likely for thinner blood.
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